
CHAPTER

EIGHTEEN

DISTRIBUTED PROBLEM SOLVING

So far in this book we have described several models and languages for under-

standing and controlling distribution and presented some (relatively) mature and

speci�c algorithms for distributed database systems. In this section we become

highly speculative|describing particular algorithms for organizing nonexistent

machines, often to do tasks that we do not know how to do on conventional,

sequential machines.

After all, why would anyone want a distributed computing system? Some

tasks, such as databases and sensing (which we discuss below), are naturally

distributed | they reect the distribution of their input sources and output

destinations. However (to echo one of our earlier themes), the real promise of

the megacomputer lies in its potential for vast increases in processing. What

tasks require so many cycles? Processing is important for problems involving

search, where we use \search" in its broadest sense. That is, an intelligent sys-

tem searches in the space of possible actions for the solution to its particular

problem.

Of course, assignments in an introductory programming course can also in-

volve search. In general, search tasks span a range from well-structured domains

to ill-structured domains. In a well-structured domain, the computer merely sifts

through a mass of data to �nd an answer. At any point it is clear which oper-

ation is to be applied to which data items. The control structure of the search

can be predicted before the program is run. Most primitive operations fail and

301

302 heuristics

this failure is forgotten. That is, the choice of what to consider next is usually

independent of most of what has already been discovered.

In an ill-structured domain there are many potentially useful actions at

any point. Selecting the most appropriate direction to follow is itself a problem

requiring solution. Distributed computing is most intriguing for this class of

problems because of the possibility of really pursuing many di�erent paths at

the same time, extending those that appear promising while deferring those

that seem barren. In e�ect, this scheme allows the real resource consumption of

subgoals to inuence the processing agenda.

Of course, distributed systems can be used for well-structured search do-

mains. Such domains allow the task to be decomposed into processor-size pieces

before it is run. The processors run in parallel, with only a minimum of commu-

nication required to integrate their results.

Ill-structured domains do not provide the luxury of prede�ned decomposi-

tion. Instead, the course of problem solving shapes the future direction of the

program. Such ill-structured domains often have multiple knowledge sources,

each of which can contribute to the solution of some problems. These sources

need to communicate queries, hypotheses, and partial results|to cooperate in

problem solving.

Functionally Accurate Cooperative Systems

Victor Lesser and Daniel Corkill [Lesser 81] characterize contemporary dis-

tributed systems as being \completely accurate, nearly autonomous" systems.

These systems are completely accurate because they operate on complete and

correct information. They are nearly autonomous because each process has an

almost complete database of the information it needs. In completely accurate,

nearly autonomous systems, the interprocess relationship is usually that of a

calling program and called subroutine (or, more �guratively, master-slave).

Lesser and Corkill argue that the best way to solve some problems is by

decomposing them into local subproblems that operate on incomplete data.

This division seems natural for dealing with problems that use many diverse

knowledge sources (such as speech understanding in the Hearsay model [Er-

man 80]) and for problems involving noisy, distributed data (such as dis-

tributed sensing).* They suggest that these systems should be organized as

\functionally accurate, cooperative" distributed systems. In such systems, the

processing nodes use incomplete data and exchange partial results. Func-

tionally accurate systems produce acceptable, though not perfect, answers.

Such systems must deal with uncertainty inherent in both the problem and

any intermediate results. Functional accuracy can be achieved by processes

* In a distributed sensing system, sensing/processing units focus on particular parts of space

and cooperate in tracking objects through the whole of the space. For example, a distributed

radar system that tracks incoming missiles is a distributed sensing system.

distributed problem solving 303

Figure 18-1 A hierarchical control structure.

that act as iterative coroutines, communicating partial results and extending

the partial results of other processes. These systems are therefore inherently

cooperative.

Cooperation structures How can systems be structured to focus control and

provide direction? One obvious mechanism is hierarchy|some topmost node (the

general) divides the original task into subproblems, and then distributes these

subproblems to the second level of command (the colonels). The colonels repeat

this subdivision through the ranks until \private-size" tasks reach the nodes

that do the primitive work. Figure 18-1 shows a hierarchical control structure.

The results of processing progress from the leaves of the hierarchy to the root.

At each level, an o�cer node synthesizes the results of its immediate subordi-

nates. This synthesis may require additional requests of the lower-level processing

nodes. Thus, this organization leads naturally to communication up and down

the hierarchy, but not across subtrees.

Hierarchical organization has the advantage that there is some control path

for focusing the system if the problem environment changes radically. How-

ever, this organization may prove unwieldy in a distributed system whose ele-

ments themselves possess considerable processing ability. The higher-level o�cer

nodes may be a communication bottleneck; the problem may not decompose into

nearly-independent subtasks, and the system as a whole is delicately dependent

on the health (nonfailure) of the top-level command.

Several alternative heterarchical control organizations for distributed sys-

tems have been proposed. In this chapter we consider three of these, Distributed

Hearsay, Contract Nets, and the Scienti�c Community Metaphor.

304 heuristics

18-1 DISTRIBUTED HEARSAY

The Hearsay-II system [Erman 80] is a speech understanding system.* It syn-

thesizes the partial interpretations of several diverse knowledge sources into a

coherent understanding of a spoken sentence. These knowledge sources cover

domains such as acoustics, phonetics, syntax, and semantics. Each knowledge

source iterates through the process of �rst hypothesizing a possible interpreta-

tion of some part of the current data and then testing the plausibility of that

hypothesis. The various knowledge sources form new hypotheses by using both

a priori knowledge about the problem domain (the information about speech un-

derstanding incorporated in the knowledge source when it was created) and those

hypotheses already generated in the problem-solving process. Because knowledge

sources work with imperfect a priori knowledge and noisy input signals, many

of the hypotheses they create are incorrect. Of course, conclusions that other

knowledge sources draw from incorrect hypotheses are also suspect. To avoid

focusing the system on a single, inappropriate solution path, each knowledge

source can generate several possible interpretations of input data, associating a

credibility rating with each.

Knowledge sources communicate by reading and writing a global database

called the blackboard. The blackboard has several distinct levels. Each level holds

a di�erent representation of the problem space (Figure 18-2). Typical black-

board levels for speech understanding are sound segments, syllables, words, and

phrases. The knowledge sources are pattern-action productions; if the informa-

tion on the blackboard matches the pattern of a knowledge source then its ac-

tion can be executed. This action usually writes new hypotheses on the black-

board. Most knowledge source patterns refer to only a few contiguous blackboard

levels.

At any time, many knowledge sources are likely to have patterns that match

the contents of the blackboard. The scheduler decides which knowledge source is

to be executed next, choosing the knowledge source whose action has the highest

priority. An action's priority is an estimate of the impact (reduction in problem

uncertainty) of the information generated by executing its pattern. Hearsay-II

also has a focus-of-control database that contains meta-information about the

system's state. This information is used both to estimate the impact of actions

and to redirect a stagnating system.

Since many actions are potentially executable at any time, Hearsay-II would

seem to be a naturally concurrent system. This proves to be the case. Experi-

ments have shown that a shared-memory, multiprocessor Hearsay-II implemen-

* The Hearsay-II architecture has been used for other knowledge-based interpretation tasks,

such as sonar interpretation [Nii 78] and image understanding [Hanson 78]. To be accurate, we

should distinguish between the architectural organization (knowledge sources, blackboard, etc.)

of Hearsay-II and the particular application of Hearsay-II to speech understanding. However,

for the sake of simplicity we merge the two, speaking of Hearsay-II as a speech understanding

system. We rely on the reader to generalize the concepts to the Hearsay-II architecture.

distributed problem solving 305

Figure 18-2 Knowledge sources and the levels of the blackboard.

tation runs signi�cantly faster than the original system [Fennell 77]. However,

because of its reliance on a centralized, global blackboard, Hearsay-II is not

trivial to distribute.

Erman and Lesser's approach to distributing Hearsay-II makes each node of

the system a full Hearsay-II system in its own right, complete with knowledge

sources, blackboard, scheduler, and focus-of-control database [Lesser 80]. This is

possible because speech understanding naturally divides along two dimensions,

blackboard level and time. The blackboard has multiple levels, and few knowledge

sources mention information on more than two contiguous levels. The speech

signal is itself distributed in time|typically, signals a few seconds apart interact

only at the highest semantic levels. Thus, by overlapping the signal covered

by di�erent nodes, Distributed Hearsay-II systems need to communicate only

semantic information. This distribution of tasks by the two-dimensional problem

space produces a \near neighbor" communication pattern. The decision of which

information to communicate is also entrusted to knowledge sources|particular

transmit actions are matched by appropriate receive patterns.

Erman and Lesser's experiments with a Distributed Hearsay-II system di-

vided the knowledge-level/time space only along the temporal dimension. Each

logical node was statically assigned a continuous segment of speech signal, with

the segments of neighboring nodes overlapping. Thus, each node had a full set

of knowledge sources. Figure 18-3 shows the task division among the nodes. Dis-

tributing Hearsay-II prompted a few modi�cations to the speech understanding

knowledge sources. Erman and Lesser added communication knowledge sources,

modi�ed those knowledge sources that depended on distant information, and cor-

rected those knowledge sources that contained implicit assumptions about the

sequential nature of the overall processing. They discovered that a (simulated)

three-node Distributed Hearsay-II system proved accurate on a set of sample

utterances and produced a slight (10 percent) improvement in overall system

306 heuristics

speed. The system was also somewhat immune to communication errors. Even

when many internode communications were discarded, it still understood most

sample sentences. Distributed Hearsay-II was thus self-correcting and function-

ally accurate. This result is not surprising; the original Hearsay-II architecture

was designed to deal with noisy and incomplete data. This resilience carried over

into the distributed environment.

The Hearsay-II speech understanding system was easy to distribute because

the problem domain and knowledge sources themselves have a natural distribu-

tion. Few knowledge sources reference noncontiguous levels of the blackboard;

the understanding of a particular segment of speech is related only semanti-

cally to another segment seconds later. Our next two approaches, Contract Nets

and the Scienti�c Community Metaphor, consider the organization of interacting

knowledge sources without respect to the geometry of the underlying problem

structure.

Figure 18-3 Task division in Distributed Hearsay-II.

distributed problem solving 307

18-2 CONTRACT NETS

Reid Smith and Randall Davis propose the Contract Net Protocol as an ar-

chitecture for organizing distributed systems, particularly for the problem of

distributing tasks among a set of (potentially heterogeneous) nodes [Smith 78,

Smith 81a]. They start with the idea of expert problem solvers who need to com-

municate tasks and solutions. Smith and Davis argue that such a collection of

experts need problem-solving protocols, much as computer networks need com-

munication protocols. The Contract Net Protocol draws its inspiration from the

activities surrounding the negotiation of commercial contracts.

A Contract Net is a set of autonomous processing nodes that communicate

according to the rules of the Contract Net Protocol. Individual subtasks of the

global problem are called contracts. A node that needs a subtask performed ad-

vertises (broadcasts) the existence of that task to the other nodes of the network.

Those nodes that have the resources or expertise to solve the task bid on it, re-

turning the bids to the broadcasting node (the manager of the task). On the basis

of the information in the bid responses, the manager node awards the contract

to one of the bidders, the contractor. The contractor can then break the task of

the contract into further subtasks, letting out contracts on those subtasks.

Unlike hierarchical structures, the Contract Net Protocol calls for negotiation

between nodes. Nodes evaluate announcements, bidding only on those of interest.

Managers evaluate bids to select the most appropriate bidder. The protocol thus

ensures a mutual selection.

A manager with a contract can broadcast the terms of that contract to all

other nodes. However, broadcasting wastes precious communication bandwidth.

A manager that knows which nodes are potential bidders sends a limited broad-

cast to only those nodes. A manager that can narrow the potential contract to

a single node sends just that node a point-to-point announcement. The Protocol

also allows directed contracts, awarded by a manager to a speci�c node without

bidding, and request-response sequences, used to obtain immediate information

without negotiation.

Task announcements contain three kinds of information. The task abstraction

is a brief description of the task. The eligibility speci�cation lists criteria that

potential bidders must meet. And the bid speci�cation details the form of desired

bids. The bid speci�cation resembles an application form with blanks to be �lled

in; potential contractors need to return only values for the blanks, instead of

retransmitting the entire form.

After a manager has received bids, it selects a successful bidder and awards

the contract to that bidder. This award contains a task description, a complete

speci�cation of the task. On completing the task, the contractor returns a task re-

port to the manager, which includes the results of performing the task. Managers

may also terminate un�nished contracts still in progress.

Smith and Davis cite distributed sensing as a possible application of Contract

Nets. Their hypothetical sensing system has many nodes that communicate over

308 heuristics

a common broadcast channel. The nodes themselves have sensing or processing

capabilities (or both). A sensing node detects tra�c in its neighborhood and

performs low-level feature analysis. A processing node integrates and processes

the data from sensing nodes. A processing node does not have to be physically

near a sensing node to use its results. A single monitor node is responsible for

managing the entire task and communicating with the outside world. The other

nodes are at �xed positions. These nodes know their positions, but this knowledge

is not known a priori by the monitor.

Just as the knowledge in speech understanding naturally divides into di�er-

ent levels, distributed sensing has distinct levels: signal processing, signal group-

ing, vehicle detection, area mapping, and global mapping. Related signals from

a single sensor are formed into signal groups; several signal groups detected from

di�erent locations compose into a vehicle. Once discovered, vehicles are subject

to analysis for type, location, and projected course. From the vehicles in a region

the system develops an understanding of the tra�c in that region; from regional

understanding comes a global understanding. This natural hierarchy leads to a

processing hierarchy. Figure 18-4 shows one such organization of nodes.

The �rst task of the system is to divide the tra�c space into areas. The

monitor node (knowing the names of potential area processors) broadcasts a

task announcement to them, requesting bids on area division. The area proces-

sors respond with bids; each bid includes the bidder's location. From the replies,

the monitor partitions the space, awarding area contracts to some of the bid-

ders, the area managers. These managers continue this process recursively, seek-

ing signal-group processing nodes. However, since the area nodes do not know

which signal-group nodes are in their areas, they must broadcast their task an-

nouncements. These announcements require (as an eligibility speci�cation) that

the signal-group nodes must be within the area node's area. The process contin-

ues through to signals, thus de�ning the initial state of the sensing tree. Nodes

that do not already have tasks (or have the capacity to accommodate additional

tasks) continue to listen for task announcements and bid for contracts.

The same organization that is used to create the sensing hierarchy is used

during system operation. A signal sensor that detects a signal reports to its group

manager. This group manager then integrates this signal with its existing signal

group or attempts to form a new signal group. The group manager reports new

groups to the area contractor. Using the contract announcement and bidding

procedure, the area contractor either �nds the vehicle contractor that is already

monitoring that signal or creates a new vehicle monitor to do that monitoring. If

the vehicle monitoring task requires help with localization or course prediction,

the vehicle monitor issues subcontracts.

We introduced distributed problem solving by arguing that in ill-structured,

distributed search, dividing the search space is itself a major task. The Contract

Net formalism takes this idea to heart, providing mechanisms for distributing

tasks. Just as programming languages do not prescribe per se which programs

are to be written in them, the Contract Net Protocol does not specify what

distributed problem solving 309

Figure 18-4 The distributed sensing hierarchy.

contracts should be let and bid or how bid speci�cations should be phrased.

Contract Nets provides only the framework for internode negotiations on the

problem-solving issues.

18-3 THE SCIENTIFIC COMMUNITY METAPHOR

Paradigms draw their inspiration from analogy|the transfer of the key features

of one domain to another. The Hearsay-II architecture is guided by analogy to

310 heuristics

people who communicate on a shared blackboard; Contract Nets, by analogy to

businesses negotiating for subcontracts.

Perhaps the ultimate human re�nement of the problem-solving process is

the activity of science itself. William Kornfeld and Carl Hewitt have investigated

the idea of treating machine problem solving analogically to the problem-solving

structure of an idealized scienti�c community [Kornfeld 81]. Scientists, far more

than the knowledge sources of Hearsay-II, incorporate active problem solving.

And like the societies of which they are a part, scienti�c communities use the

economics of funding as an essential control mechanism.

Kornfeld and Hewitt identify several aspects of the organization of scienti�c

research that they feel are important to mimic in distributed problem-solving

systems: monotonicity, commutativity, parallelism, and pluralism. Monotonic-

ity refers to the monotonic increase in the store of scienti�c knowledge|early

results may be later contradicted, but their vestiges remain. For scienti�c com-

munities, archived journal volumes embody this monotonicity. Commutativity is

the ability of scientists to draw both on work already completed and on work

still to be done. That is, it does not matter which came �rst, the \answer" or the

\question"|the two can be matched in either case. Parallelism results from sci-

entists working concurrently, using this concurrence to guide resource allocation

and search direction. And pluralism refers to the ability of a scienti�c community

to entertain multiple hypotheses at any time, with no hypothesis ever achieving

the status of \absolute truth."

Kornfeld and Hewitt have developed the language Ether to express highly

parallel, \scienti�c community" algorithms. Ether is based on the message-

passing theme of Actors (Chapter 11) and extends the demon ideas of arti�-

cial intelligence languages such as Planner [Hewitt 69] and Micro-Planner [Suss-

man 70]. These languages revolve around a global database. Each demon has

a pattern and an action. The demon \watches" the database, and when the

information in the database matches its pattern, it executes its action.*

In Planner, demons recognized only those database changes that happened

after their creation. Ether proposes a new kind of demon, the sprite. Like Plan-

ner demons, sprites recognize database entries that match their patterns. How-

ever, unlike demons, sprites are commutative. A sprite that matches a data item

matches that item, regardless of whether the sprite was created before or af-

ter the data item. Ether systems thus resemble the interaction of scientists and

scienti�c libraries. A researcher interested in a given topic �nds papers on that

topic regardless of whether the papers were written before or after her interest

was aroused. Similarly, a sprite interested in a particular fact in the database

�nds that fact regardless of when it was created.

* Resemblance to the knowledge sources and blackboard of Hearsay-II is not coincidental.

Demons have been a recurring A.I. theme with more di�erent instantiations than we care

to list. However, Planner was certainly one of the �rst systems to explicitly support them.

Production systems are the generalization of pattern/action systems. A good overview of the

use of production systems in A.I., circa 1976, is Davis and King [Davis 76].

distributed problem solving 311

Since many sprites can be active at any time, Ether is a parallel system. And

Ether supports a form of state vector or possible world for dealing with multiple,

competing hypotheses, thus providing a mechanism to support pluralism.

Combinatorial implosion Kornfeld presents the example of �nding the cov-

ering set of a predicate using sprites [Kornfeld 82]. We are given a set of propo-

sitional predicates, P = fp1; p2; : : : ; pkg and a predicate P such that

P � p1 _ p2 _ � � � _ pk

The problem task is to determine all subsets S of P such that:

P �S

and

there is no proper subset R of S such that P �R

That is, we want all the \minimal covering subsets" of P . For example, we

imagine our propositions ranging over the base predicates A, B, C, D, and E. If

our original set fp1; p2; p3; p4; p5g is

p1 = A _B
p2 = C _D
p3 = A _C
p4 = B _D
p5 = E

and our given predicate P is

P = A_B _C _D_E

then the minimal subsets, S, are

fp1; p2; p5g
and

fp3; p4; p5g

We say that a set S for which P �S is a working set, while a working set with

no working, proper subsets is a minimal set.

This problem is amenable to both top-down and bottom-up solutions. In the

top-down solution, one starts with the entire set, P . We consider all subsets of

P formed by removing one element from P . If none of those sets works, then P

is a minimal set (and should be added to the set of answers). If any one of those

subsets works, then we need to apply the process recursively to each working

subset.

This algorithm is easily expressed in Lisp. We represent sets of propositions

as lists; the set fp1; p2; p4g becomes the list (p1 p2 p4). We imagine having the

following auxiliary functions and constant:

312 heuristics

(working s) � is true if s works with respect to the global predicate P.

(remove x l) � is a list of all the elements of l except x.

(result w) � adds w to the list of answers if it is not already there.

(mapcar f l) � applies function f to each element of l, returning a list of the

results. Mapcar is a standard Lisp function.

(mapc f l) � applies function f to each element of l, returning nil. Mapc is a

standard Lisp function.

(mapconc f l) � applies function f to each element of l. Each application should

yield a list of values. These lists are appended together to form

the function's result. (Actually, the lists are destructively joined

together, an irrelevant detail for our purposes.) Mapconc is a

standard Lisp function.

P � the list that represents the entire set of propositions.

The top-down function is as follows:*

(top down l) �

(top down recur l

(keep working (mapcar (lambda (x) (remove x l))

l)))

(top down recur l w) �

(cond ((null w) (result l))

(t (mapc top down w)))

(keep working m) �

(mapconc (lambda (s)

(cond ((working s) (list s))

(t nil)))

m)

The program is run as (top down P). Before running this program the answer

list should be set to nil.

In the bottom-up solution, we successively create all subsets of P , from the

empty set to the entirety of P . At each stage, we add each set that works and

is not a superset of any minimal set to the collection of minimal sets. For this

program, we need the additional auxiliary functions

(superset working l) � is true if l is a superset of any already-found answer.

* We have written this program with two auxiliary functions to avoid deluging the reader

with embedded lambda expressions.

distributed problem solving 313

(member x l) � is true if x is a (top-level) element of the list l. Member is a

standard Lisp function.

The bottom-up program is as follows:

(bottom up l) �

(cond ((null l) nil)

(t (mapc bottom up one l)

(bottom up (successors l))))

(bottom up one s) �

(cond ((superset working s) nil)

((working s) (result s)))

(successors l) �

(mapconc

(lambda (m)

(mapconc

(lambda (x)

(cond ((member x m) nil)

(t (list (cons x m)))))

P))

l)

- - The embedded mapping functions are the Lisp equivalent to Pascal

embedded for loops.

This program is run as (bottom up (quote (nil))).

Which program, top down or bottom up, is better? The top-down solution is

faster if the minimal subsets are large with respect to the original set; the bottom-

up solution is faster if they are small.* Each algorithm is already amenable to

some immediate concurrent acceleration, because the mapping functions (mapc,

mapcar, and mapconc) can apply their functional arguments to the elements of

their list arguments in parallel.

Kornfeld observes that a large improvement in execution time can result

from running both algorithms concurrently if each passes information about

its discoveries to the other. More speci�cally, when top down �nds that a

set does not work, then no subset of that set works; when bottom up �nds

that a set works, then no superset of that set is minimal. Many algorithms

* These programs are also wasteful, in that many subsets of P are generated repeatedly and

some answers are found several times. Exercise 18-5 asks for a modi�cation of the top-down

algorithm to avoid generating redundant subsets.

314 heuristics

are of exponential complexity | the number of elements that need examin-

ing \explodes" (increases exponentially) as the size of the problem increases.

The top-down and bottom-up algorithms have this property. If P is a set

of size k, then bottom up considers 2k di�erent possible sets in its search

for minimal sets. However, the combination of several search algorithms, op-

erating cooperatively and in parallel, can eliminate this combinatorial explo-

sion, producing instead a combinatorial implosion. Kornfeld proposes the Ether

language as an appropriate vehicle for describing combinatorially implosive

algorithms.

Ether is based on sprites. The syntax

(when <trigger> <command1> : : : <commandk>)

de�nes the action of a sprite that, when it recognizes database entries that match

<trigger>, executes actions <command1> : : : <commandk>. Function assert en-

ters items into the database. To set a sprite working, it must be activated.

The sprite that recognizes working sets and asserts the nonminimality of

their supersets is

(not minimal upwards) �
(when hWorks Si

(foreach q 2 P

(if (not (q 2 S))

(assert hWorks (fqg [S)i))))

Similarly, the sprite that asserts that subsets of nonworking sets are nonworking

is

(not working downwards) �
(when hNotWorks Si

(foreach q 2 S

(assert hNotWorks (S � fqg)i)))

Of course, the value of working simultaneously from both ends is that redun-

dant searching can be eliminated. Ether provides such a capability with proc-

esses that can be explicitly destroyed. Ether calls processes activities. Function

NewActivity creates a new activity; function Execute starts an activity running

a particular piece of code. A sprite is an activity that runs a pattern/action

program. Executing stie on an activity aborts it.

In our example, evaluation of (working S) asserts (in the database) either

hWorks Si or hNotWorks Si. Sprites whose pattern refers to one of these assertions
will then be able to execute their actions.

(top down S) �
(foreach q 2 S

distributed problem solving 315

(let ((activity (NewActivity)))

(Execute (working (S � fqg)) activity)
- - Create a new sprite

and call it \activity."

(when hWorks (S � fqg)i
(stie activity)

(top down (S � fqg)))
(when hNotWorks (S � fqg)i

(stie activity))))

(when (8 q 2 S hNotWorks (S � fqg)i)
(assert hMinimal Si)))

- - This sprite has a

quanti�ed pattern.

Similarly, function bottom up is

(bottom up S) �
(foreach q 2 P

(if (not (q 2 S))

(let ((activity (NewActivity)))

(Execute (working (S [fqg)) activity)
(when hNotWorks (S [fqg)i

(stie activity)

(bottom up (S [fqg)))
(when hWorks (S [fqg)i

(stie activity)

(assert hMinimal (S [fqg)i)))))

The entire program is run as

(progn

(Execute (top down P) (NewActivity))

(Execute (bottom up f g) (NewActivity))
(Execute (not working downwards) (NewActivity))

(Execute (not minimal upwards) (NewActivity)))

which sets four initial sprites running to solve the task. The last two sprites in

this list are accelerators facilitating the passing of results through the system.

When the activity created by this function has quiesced, the database contains

Minimal assertions for exactly the minimal sets.

This example uses a simple structure (database pairs such as hWorks xi) to
encode the information discovered by the sprites. Hewitt, Kornfeld, and de Jong

[Kornfeld 81; Hewitt 84] argue that distributed systems based on communication

need to be more complex; they must incorporate distinguishable world view-

points, descriptions of system objects, sponsorship-based control, and elements

of self-knowledge and self-reference. They call such systems Open Systems.

Viewpoints support the relativization of beliefs. A system with viewpoints

allows the creation of possible worlds, the assertion of di�erent hypotheses in

316 heuristics

di�erent worlds, and the deduction of varying conclusions based on these di�ering

hypotheses. A major issue in the construction of such an architecture is the

inheritance of properties between subworlds.*

The idea of descriptions is that the description of what something is should

be separated from the details of its implemention. This echoes both the ab-

stract data type theme of separating abstract speci�cation from implementation

(Section 2-2) and the ancient A.I. debate over procedural and declarative repre-

sentations [Winograd 75].

A major factor controlling the direction of scienti�c research is the allocation

of research funds by sponsoring organizations. More promising research is more

likely to be funded. In Ether, this idea is reected in the requirement that all

sprite triggering is to be performed under the control of a sponsor that is working

on a particular goal. An explicit goal function associates goals with sponsors. The

stie command of the covering sets program is also an example of sponsor-based

control.

Finally, since distributed problem solving involves many elements of negotia-

tion and control, distributed problem-solving systems need to have some elements

of self-knowledge and self-reference. When a subsystem is oundering or reaching

contradictions, it needs mechanisms to discover and analyze the problem.

In summary, Hewitt and his coworkers propose extending the communication

basis of Actor systems (Chapter 11) to distributed problem-solving systems.

Their investigation has identi�ed many fundamental aspects of such systems.

These include the need to base distributed systems on communication and to

model them on sophisticated problem-solving mechanisms.

18-4 SYNTHESIS

Di�erent programming languages have di�erent pragmatic characteristics. In-

dividual languages lend themselves to certain tasks and suggest particular al-

gorithms for those tasks. We �nd similar specializations in the pragmatics of

distributed problem-solving architectures. Distributed Hearsay takes advantage

of the regular geometry of certain problem spaces. It divides a task into chunks

that overlap on that space and allocates one chunk to each process. An in-

teresting open question is whether the Distributed Hearsay-II architecture can

pro�tably be applied in domains that lack an appropriate geometry. The Con-

tract Net Protocol focuses on the task distribution aspect of problem solving,

taking seriously the idea that task distribution is a problem that requires solu-

tion as much as any other. The Protocol suggests modeling task distribution on

* Possible world semantics is yet another subject with a vast literature, spanning both

philosophy and arti�cial intelligence. Some of the more interesting A.I. ideas are those of

Moore [Moore 79] and Weyhrauch [Weyhrauch 80].

distributed problem solving 317

a simpli�ed contract economy. The Scienti�c Community Metaphor argues that

the ultimate distributed systems will need to be communication-based reason-

ing systems. Such systems will require richer representations of data and more

complex inference patterns than simple serial systems have so far achieved.

Of course, each of these formalisms has its limitations. Distributed Hearsay-

II is still limited by the geometry of the problem space. Contract Nets is a

general but low-level tool for organizing systems. It recognizes that the elements

of the problem-solving system will not even know where to �nd the expertise

they need. Its resolution is to broadcast requests for subtask solution. However,

depending on the underlying architecture, broadcasting can be expensive. It may

be a mistake to encourage broadcasting at so low a system level. Contract Nets

also requires that the solutions of tasks be funneled back to the originator of

that task. This precludes continuation-based architectures.

The Scienti�c Community Metaphor is probably the most advanced in rec-

ognizing the attributes required of a coordinated computing system. But that

advanced perspective is a major obstacle to using these ideas in the near future.

The Metaphor demands knowledge representation and reasoning beyond the ca-

pabilities of current systems. Journal articles may be permanent, but typical

articles mention a vast volume of bibliographic and documentary evidence in the

process of drawing only narrow conclusions. Knowledge representation systems

have only begun to deal with issues involved in dependencies and truth mainte-

nance. Adding the complexities of communication complicates matters further.

The Metaphor's introduction of sponsors acknowledges that distributed problem-

solving systems will need to devote much of their resources to self-monitoring.

Programming languages have evolved in the programming environment, im-

proving on the (perceived) inadequacies of earlier languages and propelled by

developments in associated mathematical theories such as formal languages and

semantics. We expect that distributed problem-solving architectures will evolve

in the same way.

PROBLEMS

y 18-1 Lesser and Corkill, in a demonstration of the depth of cooperation needed for serious

decentralized control, propose the following problem [Lesser 78, p. 8]:

Consider a demand bus system where a eet of buses is to serve an urban area. Upon

arrival at a bus stop, a customer might dial his desired destination on a selector device

and this information would be used to plan bus routing dynamically. There are a number

of elements which must be considered in such a system: buses should be kept reasonably

full but not overloaded; the total mileage of the eet should be kept as low as possible; the

mean service time (waiting time at the bus stop and riding time) should be kept small;

the maximum service time of any one customer should not exceed a reasonable amount (a

customer waiting to get to Fifth and Main should not have to ride around all day merely

because no one else needs to go near that location); and the system should be able to

monitor and respond to special events (e.g., di�erent tra�c patterns at di�erent times of

318 heuristics

the day, concerts, athletic events, local weather conditions, bus breakdowns, stalled tra�c,

etc.)

Lesser and Corkill propose that any solution involve a limited broadcast transmitter/micro-

processor on each bus and at each bus stop. They argue that such processing elements must not

only retain a local view, but must also achieve distributed control to respond to more global

conditions.

Using the language or model of your choice, program a solution to the distributed demand-

driven bus system problem.

y 18-2 Lesser and Corkill also propose the Distributed Processing Game [Lesser 78] as a

vehicle for exploring distributed control. The game they describe is quite general; the rules

are parameterized di�erently for each play. For the sake of simplicity, we present only a sin-

gle instantiation of the Distributed Processing Game. Also, for simplicity and tractability of

implementation, we have modi�ed some of the rules.

The game is a two-team game, played on a �nite section of a plane 2000 by 2000 units

large [that is, all points (x; y) such that �1000�x; y�1000]. Each team has 24 mobile nodes

(the rovers) and a single, stationary home node. At the start of the game, random locations are

selected for the home nodes and the players distribute their rovers within a 20-unit radius of

their home nodes. Each rover has a unique identity (a number from 1 through 24) and knows

its own initial location and the location of its home. The object of the game is to destroy the

opponent's home node before one's own home is destroyed.

The rovers are equipped with sensors, communication devices, and energy weapons. The

game proceeds in discrete steps, which are alternating team's turns. A turn consists of:

(a) Each rover moves to any spot within 10 units of its current location.

(b) Each node senses its environment. It becomes aware of the location and identity

of any node within 20 units. It also becomes aware of the number of friendly and

the number of unfriendly nodes within 40 units. It does not �nd out the identity or

speci�c location of any unit more than 20 units away.

(c) Each node broadcasts a communication.

(d) Each node receives the communications of all nodes on its team within 100 units.

(e) Each rover can point its weapon in any direction, focus it to an angle �, 15� � �

� 90�, and shoot. The weapon covers an area of 36� square units; the smaller the

angle �, the longer the covered range. Any rover that is in the coverage of the �ring

weapons of two or more rovers is destroyed (removed from the game). (This also

includes rovers of the attacking team.) A \last words" message can be left by a rover

just before it is annihilated. This message can include the identity and location of

its attackers. It is received on its team's next turn. Any rover that is hit by only a

single shot is unscathed. Such a rover becomes aware of the location of its attacker.

On the other hand, home nodes accumulate damage. Each rover that attacks

a home node adds one damage unit to it. The �rst home node to accumulate 20

damage units is destroyed (resulting in a loss for that team). Figure 18-5 shows a

pair of attacks.

After the completion of one side's turn, control passes to the other team for its �ve-step

turn. Since attacking requires cooperation, this game is a good test of cooperation strategies.

These rules designate a large amount of computation. But it's just as well, because the

various nodes are all processes. In particular, each (human) player programs her team's nodes.

The game is then run free of human intervention.

The advanced version of the game introduces errors into communication and sensing.

That is, in the advanced game, there is a �nite probability (say, 15 percent) that any sensing

or communication message is lost.

distributed problem solving 319

Figure 18-5 Attack sectors.

We have selected the above numbers arbitrarily. Clearly, the game can be varied in other

ways. For example, instead of alternating, teams could move simultaneously; messages between

nodes could be restricted to some particular size; and so forth.

18-3 Compare and contrast demons and guarded statements.

18-4 Modify the Lisp program for the top-down covering set problem so that it deals ab-

stractly with sets, not lists. Invent any set-primitive and set-mapping functions you may need,

such as union, subset, and mapset.

18-5 Modify the programs for the top-down covering set problem so that top down is never

called on any set more than once. (Hint: Provide an ordering on the elements of the original set.

Associate with each recursive subset an element \beyond which that subset does not generate

new sets.")

18-6 Does running the top down and bottom up Ether programs concurrently solve the

combinatorial explosion problem in all cases?

y 18-7 By the experimental or analytic method of your choice, determine the expected degree

of improvement gained by running the two algorithms concurrently.

18-8 What parallels can you draw between the monotonicity of Ether systems and the

monotonicity of the increasing �xedness of frons lists (Chapter 12)?

y 18-9 Societies develop economic systems to organize, control and distribute the results of

economic labor. From the time of Adam Smith to the present day, economic systems have

been proposed and analyzed. Three of the most interesting systems (from the point of view of

coordinated computing) are centralized, planned economies (the current Soviet model) where

a centralized authority distributes all tasks and resources; laissez faire, free market economies

(the \ideal" of the American economy) where the marketplace is the only control; and mixed

planned/decentralized economies (the French and Japanese economies) where the government

sets goals and provides incentives to meet them. Clearly, centralized planning is the \subroutine

structure" of conventional programming. Contract Nets captures some aspects of economies

with the idea of contracts; sponsors in Ether capture another. A laissez faire economic model

320 heuristics

would merge the two with a real sense of currency. That is, Contract Nets gives us processes

that compete for work but have no drive for accumulation (why are all these tasks bidding?);

sponsors give us funding agencies but no funds (and no funding action except project cancel-

lation). How would a coordinated computing system organized as a free market be structured?

What elements of centralized planning could be introduced into such a system to improve its

performance? Consider the ability of a central controller to shift system organization through

taxation policy.

y 18-10 Mammalian neural systems (particularly the human neural system) have proved to

be ideal distributed problem solvers, combining with great skill distributed sensing, intelligent

processing, and e�ective manipulation. The neural system combines a high degree of redun-

dancy with regularly-patterned control paths. It makes signi�cant use of inhibition to prevent

undesired processing. The nervous system is also amazingly complex. Read Kent's book, The

Brains of Men and Machines [Kent 81], and design a coordinated computing system based on

neural principles.

y 18-11 Individual businesses achieve their goals though composed of many independent proc-

essing elements (the workers). Mark Fox suggests that business organizations can serve as a

model of system design. He develops a design language that incorporates facets of the busi-

ness organization metaphor [Fox 79; Fox 81]. Design a coordinated computing system based

on business and management paradigms. Another possible starting place for working on this

problem is Galbraith's Organizational Design [Galbraith 77]. That book is a good introduction

to management concepts used in business organizations.

REFERENCES

[Corkill 83] Corkill, D. D., and V. R. Lesser, \The Use of Meta-level Control for Coordi-

nation in a Distributed Problem Solving Network," Proc. 8th Int. J. Conf. Artif. Intell.,

Karlsruhe, Germany (August 1983), pp. 748{755. In this paper, Corkill and Lesser ex-

tend their work on Distributed Hearsay-II, using the problems of distributed sensing as a

framework in which to study distributed control.

[Davis 76] Davis, R., and J. King, \An Overview of Production Systems," in E. W. El-

cock, and D. Michie (eds.), Machine Intelligence 8, Wiley, New York (1976), pp. 300{332.

Broadly speaking, a production system is a set of pattern-action pairs (productions) and a

database. A production system executes by repeatedly (1) �nding a production whose pat-

tern matches the database, and (2) executing the action of that production. The matching

process on the pattern may bind some of the identi�ers of the action, so one can write

quanti�ed productions. Production systems are a recurrent theme in A.I., appearing in

many di�erent guises. This paper discusses the theoretical nature of production systems

and provides examples of systems that use them.

[Davis 83] Davis, R., and R. G. Smith, \Negotiation as a Metaphor for Distributed Problem

Solving," Artif. Intell., vol. 20, no. 1 (January 1983), pp. 63{109. Davis and Smith argue

that negotiation is the appropriate metaphorical foundation of distributed problem solving

and that Contract Nets is a good organization for such negotiation.

[Erman 80] Erman, L. D., F. Hayes-Roth, V. R. Lesser, and D. R. Reddy, \The Hearsay-II

Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty," Comput.

Surv., vol. 12, no. 2 (June 1980), pp. 213{253. Hearsay-II is a speech understanding system,

developed at Carnegie-Mellon University in the mid 1970s. The system is characterized

by many \knowledge sources," each of which is an expert on some aspect that contributes

to understanding the spoken sound. These sources communicate their conclusions about

an input sound signal by writing messages on a common \blackboard."

[Fennell 77] Fennell, R. D., and V. R. Lesser, \Parallelism in AI Problem-Solving: A Case

Study of Hearsay-II," IEEE Trans. Comput., vol. C-26, no. 2 (February 1977), pp. 98{

111. Fennell and Lesser analyzed the performance of a multiprocessor implementation of

distributed problem solving 321

Hearsay-II. They found that the system performance could improve by a factor of 4 to 6

by the use of multiprocessors.

[Fox 79] Fox, M. S., \Organization Structuring: Designing Large Complex Software," Techni-

cal Report CMU-CS-79-155, Department of Computer Science, Carnegie-Mellon Univer-

sity, Pittsburgh, Pennsylvania (December 1979). Fox surveys organization and economic

decision theory as it applies to organizing distributed programs and systems. In the �nal

chapter of this report, he presents an organization design language, ODL.

[Fox 81] Fox, M. S., \An Organizational View of Distributed Systems," IEEE Trans. Syst.

Man Cybern., vol. SMC-11, no. 1 (January 1981), pp. 70{80. Fox argues that manage-

ment science has studied the principles of human (business) organizations and that these

principles are applicable to organizing distributed problem-solving systems.

[Galbraith 77] Galbraith, J., Organizational Design, Addison-Wesley, Reading, Mas-

sachusetts (1977). Galbraith describes the general management concepts used in business

organizations.

[Hanson 78] Hanson, A. R., and E. M. Riseman, \VISIONS: A Computer System for In-

terpreting Scenes," in A. Hanson, and E. Riseman (eds.), Computer Vision Systems,

Academic Press, New York (1978), pp. 303{333. This paper describes a system that gen-

erates a high-level, semantic description of color images of natural scenes. The system

architecture was strongly inuenced by the design of Hearsay-II.

[Hewitt 69] Hewitt, C. E., \PLANNER: A Language for Manipulating Models and Proving

Theorems in a Robot," Proc. 1st Int. J. Conf. Artif. Intell., Washington, D.C. (August

1969), pp. 295{302. The problem-solving language Planner was Hewitt's dissertation.

Knowledge in Planner was encapsulated in functional, pattern-invoked demons. Micro-

Planner [Sussman 70] was an implementation of some of the ideas in Planner.

[Hewitt 84] Hewitt, C. E., and P. de Jong, \Message Passing Semantics for Conceptual

Modeling," in M. L. Brodie, J. L. Mylopoulos, and J. W. Schmidt (eds.), On Conceptual

Modelling, Springer-Verlag, New York (1984), pp. 147{164. Hewitt and de Jong present

the theory of Open Systems.

[Kent 81] Kent, E., The Brains of Men and Machines, Byte/McGraw-Hill, Peterborough,

New Hampshire (1981). In this book, Kent attempts to describe neural function and

organization in terms that an electrical engineer can understand. The book is interesting

not so much as an exact description of neurophysiology but as a sourcebook of ideas for

the possible structure of intelligent systems.

[Kornfeld 81] Kornfeld, W. A., and C. E. Hewitt, \The Scienti�c Community Metaphor,"

IEEE Trans. Syst. Man Cybern., vol. SMC-11, no. 1 (January 1981), pp. 24{33. This

paper projects the traditional paradigms of scienti�c discovery into an organization for a

distributed problem solver.

[Kornfeld 82] Kornfeld, W. A., \Combinatorially Implosive Algorithms," CACM, vol. 25,

no. 10 (October 1982), pp. 934{938. Kornfeld argues that parallel algorithms can form a

\best-�rst" search strategy for search problems.

[Lesser 78] Lesser, V. R., and D. D. Corkill, \Cooperative Distributed Problem Solving:

A New Approach for Structuring Distributed Systems," Technical Report 78-7, Depart-

ment of Computer and Information Science, University of Massachusetts, Amherst, Mas-

sachusetts (May 1978). This report is an early presentation of the idea of cooperative

distributed problem solving. It is the source of the distributed bus problem and the

attacking-rovers game.

[Lesser 80] Lesser, V. R., and L. D. Erman, \Distributed Interpretation: A Model and

Experiment," IEEE Trans. Comput., vol. C-29, no. 12 (December 1980), pp. 1144{1163.

Lesser and Erman describe the creation of a \distributed" version of the Hearsay-II speech

understanding system.

[Lesser 81] Lesser, V. R., and D. D. Corkill, \Functionally Accurate, Cooperative Distributed

Systems," IEEE Trans. Syst. Man Cybern., vol. SMC-11, no. 1 (January 1981), pp. 81{99.

Lesser and Corkill assert that distributed systems need to treat uncertainty and errors as

part of the network problem-solving process, much as some Arti�cial Intelligence systems

322 heuristics

treat noisy input data and approximate knowledge in their problem solving. They discuss

the paradigm of functionally accurate, cooperative systems in the context of distributed

interpretation, distributed tra�c control, and distributed planning.

[Moore 79] Moore, R. C., \Reasoning About Knowledge and Action," Ph.D. dissertation,

M.I.T., Cambridge, Massachusetts (February 1979). Traditionally, reasoning about knowl-

edge deals with determining what an individual could know. Several modal logics have

been proposed for this task. Moore axiomatizes the possible-world semantics of modal

logic in �rst-order logic. This leads to reasoning about the worlds that are compatible

with an individual's knowledge.

[Nii 78] Nii, H. P., and E. A. Feigenbaum, \Rule-Based Understanding of Signals," in

D. A. Waterman, and F. Hayes-Roth (eds.), Pattern Directed Inference Systems, Aca-

demic Press, New York (1978), pp. 483{501. SU/X is a system for interpreting large

quantities of \continuous signals produced by objects" (sonar readings). SU/X uses the

Hearsay-II architecture, principally the concepts of blackboard and multilevel representa-

tion of knowledge.

[Smith 78] Smith, R. G., and R. Davis, \Distributed Problem Solving: The Contract Net Ap-

proach," Proc. 2d Natl. Conf. Canadian Soc. Comput. Stud. Intell., Toronto (July 1978),

pp. 278{287. This paper is an overview of Contract Nets. It describes the distributed-

sensing Contract Net.

[Smith 81a] Smith, R. G., A Framework for Distributed Problem Solving, UMI Research

Press, Ann Arbor (1981). This dissertation is a general study of Contract Nets. It includes

performance analyses of a simulated Contract Nets system and comparisons with other

problem-solving formalisms.

[Smith 81b] Smith, R. G., and R. Davis, \Frameworks for Cooperation in Distributed Problem

Solving," IEEE Trans. Syst. Man Cybern., vol. SMC-11, no. 1 (January 1981), pp. 61{70.

Smith and Davis identify two forms of cooperation in a distributed problem-solving sys-

tem: task sharing and result sharing. They discuss these two kinds of sharing with respect

to Contract Nets.

[Sussman 70] Sussman, G. J., T. Winograd, and E. Charniak, \MICRO-PLANNER Ref-

erence Manual," Memo 203, Arti�cial Intelligence Laboratory, M.I.T., Cambridge, Mas-

sachusetts (1970). Micro-Planner is an implementation of some of the ideas in Hewitt's

thesis [Hewitt 69]. Micro-Planner featured a database of \facts," pattern-directed invo-

cation of demons that matched the facts in that database, and automatic backtracking.

Micro-Planner had a period of popularity in the early 1970s. However, the automatic

backtracking mechanism proved too cumbersome and the language fell into disuse.

[Weyhrauch 80] Weyhrauch, R. W., \Prolegomena to a Theory of Mechanized Formal Rea-

soning," Artif. Intell., vol. 13, no. 1 (1980), pp. 133{170. Weyhrauch describes the knowl-

edge representation system FOL. FOL encapsulates both collections of facts and rules for

manipulating those facts in a single structure. One can both reason in this structure or

reason about it.

[Winograd 75] Winograd, T., \Frame Representations and the Declarative-Procedural Con-

troversy," in D. G. Bobrow, and A. Collins (eds.), Representation and Understanding,

Academic Press, New York (1975), pp. 185{210. Prior to Micro-Planner, the mainstream

of A.I. knowledge representations was declarative: the facts of the situation were described

in a suitable logic and a general-purpose theorem prover sought to prove the desired goals.

Micro-Planner represented knowledge in procedural form; knowing something was know-

ing what to do with it. This dichotomy lead to the \declarative-procedural controversy" as

to whether the best method of knowledge representation used axioms or programs. A more

modern view is that systems not only need to reason with their knowledge (procedural

form) but also to reason about it (declarative form).

